Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(15): e2319127121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557191

RESUMO

Organic compounds can crystallize in different forms known as polymorphs. Discovery and control of polymorphism is crucial to the pharmaceutical industry since different polymorphs can have significantly different physical properties which impacts their utilization in drug delivery. Certain polymorphs have been reported to 'disappear' from the physical world, irreversibly converting to new ones. These unwanted polymorph conversions, initially prevented by slow nucleation kinetics, are eventually observed driven by significant gains in thermodynamic stabilities. The most infamous of these cases is that of the HIV drug ritonavir (RVR): Once its reluctant form was unwillingly nucleated for the first time, its desired form could no longer be produced with the same manufacturing process. Here we show that RVR's extraordinary disappearing polymorph as well as its reluctant form can be consistently produced by ball-milling under different environmental conditions. We demonstrate that the significant difference in stability between its polymorphs can be changed and reversed in the mill-a process we show is driven by crystal size as well as crystal shape and conformational effects. We also show that those effects can be controlled through careful design of milling conditions since they dictate the kinetics of crystal breakage, dissolution, and growth processes that eventually lead to steady-state crystal sizes and shapes in the mill. This work highlights the huge potential of mechanochemistry in polymorph discovery of forms initially difficult to nucleate, recovery of disappearing polymorphs, and polymorph control of complex flexible drug compounds such as RVR.

2.
Protein Sci ; 33(5): e4971, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591647

RESUMO

As protein crystals are increasingly finding diverse applications as scaffolds, controlled crystal polymorphism presents a facile strategy to form crystalline assemblies with controllable porosity with minimal to no protein engineering. Polymorphs of consensus tetratricopeptide repeat proteins with varying porosity were obtained through co-crystallization with metal salts, exploiting the innate metal ion geometric requirements. A single structurally exposed negative amino acid cluster was responsible for metal coordination, despite the abundance of negatively charged residues. Density functional theory calculations showed that while most of the crystals were the most thermodynamically stable assemblies, some were kinetically trapped states. Thus, crystalline porosity diversity is achieved and controlled with metal coordination, opening a new scope in the application of proteins as biocompatible protein-metal-organic frameworks (POFs). In addition, metal-dependent polymorphic crystals allow direct comparison of metal coordination preferences.


Assuntos
Estruturas Metalorgânicas , Proteínas , Proteínas/genética , Proteínas/química , Metais/química , Cristalização
3.
Heliyon ; 10(5): e27131, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449665

RESUMO

Introduction: Rifaximin is an intestinal antiseptic which has five (pseudo) polymorphs α, ß, γ, δ and ε. These last (pseudo)polymorphs have different physicochemical properties. The objective of the study is to assess the impact of rifaximin polymorphism on its dissolution rate which could affect its bioavailability. Material and methods: The analytical validation of dissolution assay method by UV-Visible spectrophotometry was carried out according to ICH Q2. The physicochemical characterization (solubility test, FTIR, DSC, XRD) was carried out on four active pharmaceutical ingredient (MP1, MP2, MP3, MP4). MP1 and MP2 were used by the manufacturer of generic brand 1 (G1) and MP3 and MP4 were used by the manufacturer of generic brand 2 (G2). The comparative in-vitro dissolution study was carried out on the leader brand (P), G1 and G2. Results: The four MPs were analyzed by XRD. The results of analysis showed that MP1 and MP4 were a mixture of α form and amorphous form. MP2 had an amorphous form and MP3 had a crystalline form ß. The spectra of FTIR showed that the four MP had characteristics bands of rifaximin in the domain 4000-400 cm-1. The differences between the spectra of the four MPs were observed among the amorphous form (MP2), around the region 1800 to 1820 cm-1 which is attributed to the vibration of the CO group. An additional difference observed among the amorphous form (MP2) is around the region 1400 cm-1 which is attributed to the banding OH. The thermograms of MP1, MP2 and MP4 showed endothermic peaks which are probably attributed to the departure of water which indicate that MP1, MP2 and MP4 are pseudopolymoph (hydrate). For the four MPs, probably the melting points are interrupted by the phenomenon of phase transformations (Crystallization) which are reflected by exothermic peaks around 200°C-250 °C.Our results showed that the crystalline polymorphism of rifaximin influences its solubility. According to the results of the solubility test, the ß crystal form of rifaximin (MP3) had the lowest solubility (3.47 µg/ml). MP2 had the highest solubility (8.35 µg/ml) and MP1 and MP4 had intermediate solubilities (5.47 µg/ml and 6.74 µg/ml). Comparative in vitro dissolution results showed that the dissolution profile of P was not similar to that of G1 and G2 (% dissolution (P)30min = 60%; % dissolution (G1) 30 min = 100% and % dissolution (G2) 30 min = 115%; f1(P versus G1) = 44; f1(P versus G2) = 61) in M1, while G1 and G2 had comparatively similar dissolution profiles (% dissolution (G1) 30 min = 100%; % dissolution (G1) 30 min = 110%; f1 (G1 versus G2) = 14) in M1. Conclusion: This study highlighted the impact of rifaximin polymorphism on its physico-chemical properties (crystal structure, thermal behavior, solubility) and on its dissolution behavior which could affect the rifaximin bioavailability.

4.
Malar J ; 22(1): 129, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37081532

RESUMO

BACKGROUND: Controlling malaria-transmitting Anopheles mosquitoes with pyrethroid insecticides is becoming increasingly challenging because of widespread resistance amongst vector populations. The development of new insecticides and insecticidal formulations is time consuming and costly, however. A more active crystalline form of deltamethrin, prepared by heating the commercial crystalline form, previously was reported to be 12-times faster acting against susceptible North American Anopheles quadrimaculatus mosquitoes. Herein the potential for heat-activated deltamethrin dispersed on chalk to overcome various resistance mechanisms amongst five West African Anopheles strains is investigated, and its long-term sustained lethality evaluated. METHODS: The more active deltamethrin form was generated in a commercial dust containing deltamethrin by heating the material as purchased. Tarsal contact bioassays were conducted to investigate its efficacy, potency, and speed of action against resistant Anopheles populations compared to the commercially available form of deltamethrin dust. RESULTS: In all cases, D-Fense Dust heated to generate the more active form of deltamethrin was substantially more effective than the commercially available formulation. 100% of both Banfora M and Kisumu populations were knocked down 10 min post-exposure with no recovery afterwards. Gaoua-ara and Tiefora strains exhibited 100% knockdown within 15 min, and the VK7 2014 strain exhibited 100% knockdown within 20 min. In all cases, 100% mortality was observed 24 h post-exposure. Conversely, the commercial formulation (unheated) resulted in less than 4% mortality amongst VK7 2014, Banfora, and Gaoua-ara populations by 24 h, and Tiefora and Kisumu mosquitoes experienced 14 and 47% mortality by 24 h, respectively. The heat-activated dust maintained comparable efficacy 13 months after heating. CONCLUSIONS: The heat-activated form of commercial deltamethrin D-Fense Dust outperformed the material as purchased, dramatically increasing efficacy against all tested pyrethroid-resistant strains. This increase in lethality was retained for 13 months of storage under ambient conditions in the laboratory. Higher energy forms of commonly used insecticides may be employed to overcome various resistance mechanisms seen in African Anopheles mosquitoes through more rapid uptake of insecticide molecules from their respective solid surfaces. That is, resistant mosquitoes can be killed with an insecticide to which they are resistant without altering the molecular composition of the insecticide.


Assuntos
Anopheles , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Resistência a Inseticidas , Controle de Mosquitos/métodos , Mosquitos Vetores , Piretrinas/farmacologia , Nitrilas/farmacologia
5.
J Mech Behav Biomed Mater ; 137: 105546, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375274

RESUMO

Young's modulus of α'- and α-crystals of poly (l-lactic acid) (PLLA), more precisely, of aggregates of isotropically arranged lamellae, has been estimated based on dynamic-mechanical analysis of sets of isotropic film samples containing largely different though well-defined amounts of crystals. Evaluation of the modulus of elasticity of these film samples yielded the dependence of Young's modulus as a function of the enthalpy-based crystallinity, increasing with the crystal fraction in the assessed range, from zero to about 75% crystallinity. Extrapolation towards 100% crystallinity suggests values of Young's modulus of around 3.7 and 4.6 GPa for isotropic aggregates of α'- and α-crystals, respectively, being only slightly higher than the modulus of the unaged glassy amorphous phase of 3.0 GPa. Noting the inherent anisotropy of the crystal modulus, suggested in the literature, the average modulus determined in this work seems to be controlled by weaker interchain secondary bonding but not the modulus in chain direction. Great effort has been undertaken to minimize errors by keeping the lamellar thickness in samples of different crystallinity constant, and by providing evidence for independence of the moduli on the spherulitic superstructure.


Assuntos
Ácido Láctico , Módulo de Elasticidade , Elasticidade , Anisotropia , Termodinâmica , Ácido Láctico/química
6.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012275

RESUMO

This review is aimed to provide to an "educated but non-expert" readership and an overview of the scientific, commercial, and ethical importance of investigating the crystalline forms (polymorphs, hydrates, and co-crystals) of active pharmaceutical ingredients (API). The existence of multiple crystal forms of an API is relevant not only for the selection of the best solid material to carry through the various stages of drug development, including the choice of dosage and of excipients suitable for drug development and marketing, but also in terms of intellectual property protection and/or extension. This is because the physico-chemical properties, such as solubility, dissolution rate, thermal stability, processability, etc., of the solid API may depend, sometimes dramatically, on the crystal form, with important implications on the drug's ultimate efficacy. This review will recount how the scientific community and the pharmaceutical industry learned from the catastrophic consequences of the appearance of new, more stable, and unsuspected crystal forms. The relevant aspects of hydrates, the most common pharmaceutical solid solvates, and of co-crystals, the association of two or more solid components in the same crystalline materials, will also be discussed. Examples will be provided of how to tackle multiple crystal forms with screening protocols and theoretical approaches, and ultimately how to turn into discovery and innovation the purposed preparation of new crystalline forms of an API.


Assuntos
Excipientes , Cristalização , Preparações Farmacêuticas , Solubilidade
7.
Front Mol Biosci ; 9: 960248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589243

RESUMO

None of the current data processing pipelines for X-ray crystallography fragment-based lead discovery (FBLD) consults all the information available when deciding on the lattice and symmetry (i.e., the polymorph) of each soaked crystal. Often, X-ray crystallography FBLD pipelines either choose the polymorph based on cell volume and point-group symmetry of the X-ray diffraction data or leave polymorph attribution to manual intervention on the part of the user. Thus, when the FBLD crystals belong to more than one crystal polymorph, the discovery pipeline can be plagued by space group ambiguity, especially if the polymorphs at hand are variations of the same lattice and, therefore, difficult to tell apart from their morphology and/or their apparent crystal lattices and point groups. In the course of a fragment-based lead discovery effort aimed at finding ligands of the catalytic domain of UDP-glucose glycoprotein glucosyltransferase (UGGT), we encountered a mixture of trigonal crystals and pseudotrigonal triclinic crystals-with the two lattices closely related. In order to resolve that polymorphism ambiguity, we have written and described here a series of Unix shell scripts called CoALLA (crystal polymorph and ligand likelihood-based assignment). The CoALLA scripts are written in Unix shell and use autoPROC for data processing, CCP4-Dimple/REFMAC5 and BUSTER for refinement, and RHOFIT for ligand docking. The choice of the polymorph is effected by carrying out (in each of the known polymorphs) the tasks of diffraction data indexing, integration, scaling, and structural refinement. The most likely polymorph is then chosen as the one with the best structure refinement Rfree statistic. The CoALLA scripts further implement a likelihood-based ligand assignment strategy, starting with macromolecular refinement and automated water addition, followed by removal of the water molecules that appear to be fitting ligand density, and a final round of refinement after random perturbation of the refined macromolecular model, in order to obtain unbiased difference density maps for automated ligand placement. We illustrate the use of CoALLA to discriminate between H3 and P1 crystals used for an FBLD effort to find fragments binding to the catalytic domain of Chaetomium thermophilum UGGT.

8.
Micron ; 125: 102731, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31415982

RESUMO

The morphology and elemental composition of crystals in embryos, seedlings and adult plants of the globose cacti Mammillaria uncinata were studied. Samples of mature fruits and adult plants were collected. To obtain embryos and seedlings, seeds from mature fruits were germinated under laboratory conditions. Both embryos and seedlings as well as stem and root of the adult plants were processed by conventional microtechniques and tissue macerations to isolate the individual crystals. The crystal morphology was evaluated by light and scanning electron microscopy while its chemical composition was analyzed by energy dispersive spectroscopy, IR and Raman spectroscopy. The results demonstrated the occurrence of calcium oxalate crystals in the three stages of plant growth. Solitary and small crystals are present in embryos and seedlings in contrast crystals are aggregates or conglomerates in the adult plants. The compositional analysis showed that seedling crystals contain carbon (50.37%), oxygen (45.29%) and calcium (3.36%) while in adult plants the percentage has changed to carbon (12.54%), oxygen (53.06%) and calcium (34.38%). In the IR spectrum, the vibration bands around 1321 and 1621 cm-1 are attributed to the calcium oxalate in the dihydrate state (weddellite), the Raman peak at 1475 cm-1 shows also that crystals correspond to the pure state of calcium oxalate dihydrate state. The crystal size was also different for seedlings and adult plants, mean values varied from 12.11 to 13.38 µm for width and length, respectively in seedlings and from 65.10 to 73.90 µm, in adult plants. It is concluded that the elemental composition, size and morphology of crystals in M. uncinata depend on the growth stage, as it happens in other plant species.

9.
J Pharm Biomed Anal ; 170: 8-15, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-30901720

RESUMO

The assessment of polymorphism is a problematical issue for regulatory agencies, because variations among crystalline forms of active pharmaceutical ingredient (API) can lead to changes in the efficacy and safety of formulated product. Such conversions are very hard to be detected, thus, the development of techniques for the identification, characterization and quantification of polymorphs results essential in all stages of the manufacturing process. The presence of excipients in formulated products may change the crystal stability of an API, by catalyzing a polymorphic transformation or stabilizing the less stable form. As paradox, all suitable analytical techniques (spectroscopies, thermal analysis, NMR and DRX, and others) for polymorphic analysis are affected by excipients. A deep understanding of the polymorphism-excipient relationship is in full accordance with Quality by Design (QbD) paradigm, the systematic approach focused in quality building into a product based in the full understanding of the products and process. In this work, a novel approach based on thermal stress, MIR monitoring, multivariate curve resolution with alternating least squares (MCR-ALS) and kinetic analysis was developed and applied to monitor polymorphism behavior of model API in formulated products. Commercial tablets, physical mixtures and commercial API, were processed and analyzed under the proposed approach. Commercial tablets of MFA revealed a fast conversion to Form II, contrasting to the behavior of the pure API. Physical mixtures showed similar behavior to commercial tablets, thus reduction in transformation times was related to MFA-excipients physical interaction, even at surface level. Calorimetric studies support the conclusion obtained. The developed approach could be extended to others APIs and other stress sources (humidity, solvents, mechanical forces and its combinations), being a valuable tool for QbD environment.


Assuntos
Excipientes/química , Ácido Mefenâmico/química , Química Farmacêutica/métodos , Cristalização/métodos , Umidade , Cinética , Análise dos Mínimos Quadrados , Comprimidos/química
10.
Braz. J. Pharm. Sci. (Online) ; 55: e17520, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1039059

RESUMO

We propose to evaluate the dissolution properties of rosuvastatin calcium (ROSC) capsules in different media to characterize the discriminatory power of the assay method. Dissolution assays were performed in media with different pH, and including the surfactant sodium dodecyl sulfate (SDS). Several immediate-release formulations were manufactured using the commercial raw material characterized as amorphous solid. The hydrophobic adjutant magnesium stearate was employed in some formulations due to its negative effect in the wettability and dissolution efficacy of solid dosages. These formulations showed the lower dissolution efficacy values in media without surfactant; however, when SDS was added to the medium, the dissolution efficacy increased, and the discriminatory power was lost. In spite of micellar solubilization does not increase the ROSC solubility, it modifies the discriminatory power of the assay method, increasing the wettability of the powder mixtures. The crystalline form M of ROSC was recrystallized in our laboratory, and it showed lower solubility in water than amorphous solid. However, its dissolution properties were not influenced by SDS. These results are important to develop dissolution assays for other hydrophilic drugs with increased water solubility, once that dissolution media with surfactants increase the wettability of the formulations, leading to an overrated dissolution rate.


Assuntos
Cápsulas/análise , Dissolução/análise , Rosuvastatina Cálcica/análise , Solubilidade , Cromatografia Líquida de Alta Pressão/instrumentação , Formas de Dosagem
11.
Int J Pharm ; 540(1-2): 150-161, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29438724

RESUMO

The aim of this study is to develop nanosuspension of carvedilol (CRV) by wet media milling. Concentration of polymeric stabilizer (hydroxypropyl cellulose-HPC-SL), milling speed and size of milling beads were identified as critical formulation and process parameters and their effect on CRV particle size after 60 min of milling was assessed using a Box-Behnken experimental design. Optimized nanosuspension was solidified using spray drying and freeze drying and subjected to solid state characterization. Low stabilizer concentration (10%), low milling speed (300 rpm) with small milling beads (0.1 mm) were found as optimal milling conditions. Crystal lattice simulation identified potential slip plane within CRV crystals, where fractures are the most likely to occur. Calculated mechanical properties of CRV crystal indicates that low energy stress is sufficient to initiate fracture, if applied in the correct direction, explaining the advantage of using smaller milling beads. Only spray dried nanosuspension redispersed to original nanoparticles, while particle agglomeration during freeze drying prevented sample redispersion. Wet milling and spray drying did not induce polymorphic transition of CRV, while there is indication of polymorphic transition during freeze drying, making spray drying as the preferred solidification method.


Assuntos
Antagonistas Adrenérgicos beta/química , Carbazóis/química , Nanoestruturas , Propanolaminas/química , Tecnologia Farmacêutica/métodos , Carvedilol , Celulose/análogos & derivados , Celulose/química , Cristalização , Composição de Medicamentos , Excipientes/química , Liofilização , Concentração de Íons de Hidrogênio , Modelos Estatísticos , Nanotecnologia , Tamanho da Partícula , Transição de Fase , Fatores de Tempo
12.
J Pharm Sci ; 107(1): 121-126, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716502

RESUMO

In this paper, solid-state amorphization induced by mechanical milling is shown to be a useful tool to explore the polymorphism of drugs and their mechanism of devitrification. We show in particular how the recrystallization of amorphous chlorhexidine dihydrochloride obtained by milling reveals a complex polymorphism that involves several polymorphic forms. Two new crystalline forms are identified, one of them appearing as a highly disordered precursor state which however clearly differs from the amorphous one. Several interpretations are here proposed to describe the puzzling nature of this phase. In addition, the possibility to amorphize chlorhexidine dihydrochloride by milling allowed to determine the main physical characters of the amorphous state which cannot be obtained through the usual thermal quench of the liquid because of a strong chemical degradation occurring on melting.


Assuntos
Clorexidina/química , Cristalização/métodos , Congelamento , Transição de Fase , Temperatura
13.
J Pharm Sci ; 107(1): 273-285, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29045887

RESUMO

The antibiotics family of sulfonamides has been used worldwide intensively in human therapeutics and farm livestock during decades. Intermolecular interactions of these sulfamides are important to understand their bioactivity and biodegradation. These interactions are also responsible for their supramolecular structures. The intermolecular interactions in the crystal polymorphs of the sulfonamides, sulfamethoxypyridazine, and sulfamethoxydiazine, as models of sulfonamides, have been studied by using quantum mechanical calculations. Different conformations in the sulphonamide molecules have been detected in the crystal polymorphs. Several intermolecular patterns have been studied to understand the molecular packing behavior in these antibiotics. Strong intermolecular hydrogen bonds and π-π interactions are the main driving forces for crystal packing in these sulfonamides. Different stability between polymorphs can explain the experimental behavior of these crystal forms. The calculated infrared spectroscopy frequencies explain the main intermolecular interactions in these crystals.


Assuntos
Sulfonamidas/química , Antibacterianos/química , Cristalização/métodos , Cristalografia por Raios X/métodos , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Análise Espectral/métodos , Sulfameter/química , Sulfametoxipiridazina/química , Sulfanilamida , Sulfanilamidas/química
14.
Acta Crystallogr C Struct Chem ; 73(Pt 12): 1116-1120, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29206123

RESUMO

Ganciclovir (GCV; systematic name: 2-amino-9-{[(1,3-dihydroxypropan-2-yl)oxy]methyl}-6,9-dihydro-1H-purin-6-one), C9H13N5O4, an antiviral drug for treating cytomegalovirus infections, has two known polymorphs (Forms I and II), but only the structure of the metastable Form II has been reported [Kawamura & Hirayama (2009). X-ray Struct. Anal. Online, 25, 51-52]. We describe a successful preparation of GCV Form I and its crystal structure. GCV is an achiral molecule in the sense that its individual conformers, which are generally chiral objects, undergo fast interconversion in the liquid state and cannot be isolated. In the crystalline state, GCV exists as two inversion-related conformers in Form I and as a single chiral conformer in Form II. This situation is similar to that observed for glycine, also an achiral molecule, whose α-polymorph contains two inversion-related conformers, while the γ-polymorph contains a single conformer that is chiral. The hydrogen bonds are exclusively intermolecular in Form I, but both inter- and intramolecular in Form II, which accounts for the different molecular conformations in the two polymorphs.


Assuntos
Antivirais/química , Ganciclovir/química , Cristalização , Cristalografia por Raios X , Ligação de Hidrogênio , Conformação Molecular
15.
Acta Crystallogr D Struct Biol ; 73(Pt 8): 641-649, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28777079

RESUMO

The Arenaviridae family is one of the two RNA viral families that encode a 3'-5' exonuclease in their genome. An exonuclease domain is found in the Arenaviridae nucleoprotein and targets dsRNA specifically. This domain is directly involved in suppression of innate immunity in the host cell. Like most phosphate-processing enzymes, it requires a divalent metal ion such as Mg2+ (or Mn2+) as a cofactor to catalyse nucleotide-cleavage and nucleotide-transfer reactions. On the other hand, calcium (Ca2+) inhibits this enzymatic activity, in spite of the fact that Mg2+ and Ca2+ present comparable binding affinities and biological availabilities. Here, the molecular and structural effects of the replacement of magnesium by calcium and its inhibition mechanism for phosphodiester cleavage, an essential reaction in the viral process of innate immunity suppression, are studied. Biochemical data and high-resolution structures of the Mopeia virus exonuclease domain complexed with each ion are reported for the first time. The consequences of the ion swap for the stability of the protein, the catalytic site and the functional role of a specific metal ion in enabling the catalytic cleavage of a dsRNA substrate are outlined.


Assuntos
Arenavirus/química , Arenavirus/enzimologia , Exonucleases/química , Proteínas do Nucleocapsídeo/química , Nucleoproteínas/química , Infecções por Arenaviridae/virologia , Arenavirus/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Domínio Catalítico , Cátions Bivalentes/metabolismo , Cristalização , Cristalografia por Raios X , Exonucleases/metabolismo , Magnésio/metabolismo , Manganês/metabolismo , Simulação de Acoplamento Molecular , Proteínas do Nucleocapsídeo/metabolismo , Nucleoproteínas/metabolismo , Domínios Proteicos , RNA Viral/metabolismo
16.
Int J Pharm ; 533(2): 324-334, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-28257885

RESUMO

The present study investigates the effects of formulation and process parameters on the production of aprepitant nanosuspensions applying wet media milling and subsequent solidification. Six stabilizers were used: two brands of hydroxylpropylmethyl cellulose (HPMC E-15LV and Pharmacoat 603), hydroxypropyl cellulose (HPC-SSL), polyvinylpyrollidone (PVP), D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS 1000), Poloxamer P188 and sodium dodecyl sulfate (SDS), while two diluents (mannitol and sucrose) were incorporated prior to solidification by two methods (spray- and freeze-drying). The polymorphic purity of the raw material, the particle size of nanocrystals, and the physicochemical properties of the final dried powders were assessed. Focus was placed on the energetic aspects of the crystal structure of aprepitant in order to rationalize particle breakage during wet milling. It was found that a combination of cellulosic polymers with SDS are suitable stabilizers for the production of aprepitant nanocrystals (∼300nm or smaller) by wet media milling. Regarding the solidification of the nanosuspensions, spray-drying is advantageous compared to freeze-drying, as it leads to the production of almost spherical individual micron-sized agglomerates of nanocrystals and few secondary agglomerates of them which are expected to exhibit improved handling behavior. Spray-dried nanocrystal agglomerates containing Pharmacoat 603 and mannitol exhibit reduced hygroscopity compared to those prepared with sucrose and HPC-SSL, making them the excipients of choice.


Assuntos
Antieméticos/química , Morfolinas/química , Nanopartículas/química , Aprepitanto , Composição de Medicamentos/métodos , Liofilização , Tamanho da Partícula , Polímeros/química , Dodecilsulfato de Sódio/química , Tensoativos/química
17.
J Pharm Sci ; 106(6): 1538-1544, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28192078

RESUMO

Understanding the polymorphic behavior of active pharmaceutical ingredients is important for formulation purposes and regulatory reasons. Metacetamol is an isomer of paracetamol and it similarly exhibits polymorphism. In the present article, it has been found that one of the polymorphs of metacetamol is only stable under increased pressure, which has led to the conclusion that metacetamol like paracetamol is a monotropic system under ordinary (= laboratory) conditions and that it becomes enantiotropic under pressure with the I-II-L triple point coordinates for metacetamol TI-II-L = 535 ± 10 K and PI-II-L = 692 ± 70 MPa. However, whereas for paracetamol the enantiotropy under pressure can be foreseen, because the metastable polymorph is denser, in the case of metacetamol this is not possible, as the metastable polymorph is less dense than the stable one. The existence of the stability domain for the less dense polymorph of metacetamol can only be demonstrated by the construction of the topological phase diagram as presented in this article. It is a delicate interplay between the specific volume differences and the enthalpy differences causing the stability domain of the less dense polymorph to be sandwiched between the denser polymorph and the liquid. Metacetamol shares this behavior with bicalutamide and fluoxetine nitrate.


Assuntos
Acetaminofen/química , Analgésicos não Narcóticos/química , Transição de Fase , Cristalização , Estabilidade de Medicamentos , Isomerismo , Pressão , Temperatura , Termodinâmica
18.
Chem Asian J ; 12(4): 405-409, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28028937

RESUMO

Partially ß-substituted and meso-tetrakis(pentafluorophenyl)-substituted [22]pentaphyrins 11 and 12 were synthesized by acid-catalyzed condensation of a meso-C6 F5 -substituted tripyrrane dicarbinol with ß-alkylated dipyrromethanes. These [22]pentaphyrins are stable, allowing their characterization by NMR and UV/Vis spectroscopies, and X-ray crystallography, and display strong aromaticity due to 22π-electronic circuits. In methanol, ß,ß-diethoxycarbonylated pentaphyrin 12 underwent an N-fusion reaction to give N-fused pentaphyrin 13, which exhibits crystal polymorphism between Hückel and Möbius structures, depending upon the recrystallization solvent.

19.
J Pharm Sci ; 105(10): 3136-3142, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27522525

RESUMO

Tenofovir disoproxil fumarate (TDF, form I) is an orally delivered pharmaceutical salt used for the treatment of HIV and chronic hepatitis, which acts as an inhibitor of nucleotide reverse transcriptase. There are many solid forms of TDF described in the literature; 2 of them were identified in the drug products: form I and form A. It seems that during formulation, the active pharmaceutical ingredient undergoes partial to total conversion of TDF form I to TDF form A. The goals of this study were to investigate when and why did the conversion occur and whether the conversion could be avoided and how. The influence of pH and possible interaction with excipients were studied. The conditions enabling using wet granulation in technology while preventing the undesired conversion were found. The stabilization was achieved either by replacement of used disintegrants or by acid addition to the current composition of formulation.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/metabolismo , Composição de Medicamentos/métodos , Tenofovir/química , Tenofovir/metabolismo , Estabilidade de Medicamentos , Excipientes/química , Excipientes/metabolismo , Concentração de Íons de Hidrogênio , Difração de Raios X/métodos
20.
J Pharm Sci ; 105(6): 1901-1906, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27238487

RESUMO

Melting temperatures and enthalpies of fusion have been determined by differential scanning calorimetry (DSC) for 2 polymorphs of the drug tolbutamide: FI(H) and FV. Heat capacities have been determined by temperature-modulated DSC for 4 polymorphs: FI(L), FI(H), FII, FV, and for the supercooled melt. The enthalpy of fusion of FII at its melting point has been estimated from the enthalpy of transition of FII into FI(H) through a thermodynamic cycle. Calorimetric data have been used to derive a quantitative polymorphic stability relationship between these 4 polymorphs, showing that FII is the stable polymorph below approximately 333 K, above which temperature FI(H) is the stable form up to its melting point. The relative stability of FV is well below the other polymorphs. The previously reported kinetic reversibility of the transformation between FI(L) and FI(H) has been verified using in situ Raman spectroscopy. The solid-liquid solubility of FII has been gravimetrically determined in 5 pure organic solvents (methanol, 1-propanol, ethyl acetate, acetonitrile, and toluene) over the temperature range 278 to 323 K. The ideal solubility has been estimated from calorimetric data, and solution activity coefficients at saturation in the 5 solvents determined. All solutions show positive deviation from Raoult's law, and all van't Hoff plots of solubility data are nonlinear. The solubility in toluene is well below that observed in the other investigated solvents. Solubility data have been correlated and extrapolated to the melting point using a semiempirical regression model.


Assuntos
Solventes/análise , Solventes/química , Termodinâmica , Tolbutamida/análise , Tolbutamida/química , Varredura Diferencial de Calorimetria/métodos , Estabilidade de Medicamentos , Hipoglicemiantes/análise , Hipoglicemiantes/química , Compostos Orgânicos/análise , Compostos Orgânicos/química , Solubilidade , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...